

# NGORONGORO CONSERVATION AREA AUTHORITY

Software Requirements Specification

# NCAA Digital Transformation Business Intelligence (BI) System

Version: 1.0

Date: 2025-11-12

### **Table of Contents**

- 1 Document Information
- 2 Project Overview
  - 2.1 What Are We Building
    - 2.1.1 System Function
    - 2.1.2 Users
    - 2.1.3 Problem Solved
    - 2.1.4 Key Success Metric
  - 2.2 Scope
    - 2.2.1 In Scope
    - 2.2.2 Out Of Scope
- 3 User Requirements
  - 3.1 Enterprise Data Integration
  - 3.2 Departmental Analytics
  - 3.3 Predictive Analytics
  - 3.4 Reporting Compliance
  - 3.5 Data Governance Security
  - 3.6 System Accessibility
- 4 Technical Requirements
  - 4.1 Performance
    - 4.1.1 Dashboard Load Time
    - 4.1.2 Data Refresh Rate
    - 4.1.3 Query Response Time
    - 4.1.4 Etl Processing Time
    - 4.1.5 Concurrent Users
  - 4.2 Platforms Supported
    - 4.2.1 Web Browsers
    - 4.2.2 Operating Systems

Page 2 of 33

- 4.2.3 Mobile Platforms
- 4.2.4 Cloud Infrastructure
- 4.3 Data Storage
  - 4.3.1 Primary Database
  - 4.3.2 Data Warehouse Capacity
  - 4.3.3 Backup Frequency
  - 4.3.4 Data Retention
  - 4.3.5 Archival Strategy
- $\circ$  4.4 Security Requirements
  - 4.4.1 Encryption At Rest
  - 4.4.2 Encryption In Transit
  - 4.4.3 Authentication
  - 4.4.4 Authorization
  - 4.4.5 Api Security
  - 4.4.6 Compliance
- 4.5 Integration Requirements
  - 4.5.1 Api Architecture
  - 4.5.2 Api Authentication
  - 4.5.3 Data Sync Frequency
  - 4.5.4 Supported Integrations
- 5 External Dependencies
  - 5.1 Third Party Services
  - 5.2 Internal Systems
- 6 Release Planning
  - 6.1 Phase 1
    - 6.1.1 Name
    - 6.1.2 Duration
    - 6.1.3 Deliverables
  - 6.2 Phase 2
    - 6.2.1 Name
    - 6.2.2 Duration

Page 3 of 33

- 6.2.3 Deliverables
- 6.3 Phase 3
  - 6.3.1 Name
  - 6.3.2 Duration
  - 6.3.3 Deliverables
- 7 Risks Assumptions
  - 7.1 Risks
  - 7.2 Assumptions
- 8 Market Specific Considerations
  - 8.1 Tanzania Context
  - 8.2 Conservation Sector
  - 8.3 Low Connectivity Adaptation
- 9 Sign Off
  - 9.1 Prepared By
  - 9.2 Reviewed By
  - 9.3 Approved By
  - 9.4 Date
  - 9.5 Version
- 10 Detailed Feature Requirements
  - 10.1 Ft Bi Integration
    - 10.1.1 Feature Name
    - 10.1.2 Description
    - 10.1.3 User Stories
    - 10.1.4 Acceptance Criteria
    - 10.1.5 Test Cases
  - 10.2 Ft Bi Etl
    - 10.2.1 Feature Name
    - 10.2.2 Description
    - 10.2.3 User Stories
    - 10.2.4 Acceptance Criteria
    - 10.2.5 Test Cases

### • 10.3 Ft Bi Dashboards

- 10.3.1 Feature Name
- 10.3.2 Description
- 10.3.3 User Stories
- 10.3.4 Acceptance Criteria
- 10.3.5 Test Cases

### • 10.4 Ft Bi Predict

- 10.4.1 Feature Name
- 10.4.2 Description
- 10.4.3 User Stories
- 10.4.4 Acceptance Criteria
- 10.4.5 Test Cases

### • 10.5 Ft Bi Autoreport

- 10.5.1 Feature Name
- 10.5.2 Description
- 10.5.3 User Stories
- 10.5.4 Acceptance Criteria
- 10.5.5 Test Cases

### • 11 Additional Context

### • 11.1 System Architecture

- 11.1.1 Data Source Layer
- 11.1.2 Etl Pipeline
- 11.1.3 Data Warehouse
- 11.1.4 Analytics Visualization
- 11.1.5 Security Access
- 11.1.6 Node Synchronization

### • 11.2 Integration Approach

- 11.2.1 Data Ingestion
- 11.2.2 Transformation Storage
- 11.2.3 Processing Analytics
- 11.2.4 Ai Enhancement
- 11.2.5 Distribution

- 11.3 Key Benefits
  - 11.3.1 Data Accessibility
  - 11.3.2 Decision Making
  - 11.3.3 Data Exchange
  - 11.3.4 Reporting
  - 11.3.5 Transparency
- ° 11.4 Total Budget Breakdown
  - 11.4.1 Discovery Architecture
  - 11.4.2 Data Engineering Etl
  - 11.4.3 Bi Analytics Platform
  - 11.4.4 Deployment Training Support
  - 11.4.5 Total



# 1 Document Information

| Field           | Value                                                              |
|-----------------|--------------------------------------------------------------------|
| Project Name    | NCAA Digital Transformation - Business<br>Intelligence (BI) System |
| Version         | 1.0                                                                |
| Date            | 2025-11-12                                                         |
| Project Manager | TBD                                                                |
| Platforms       | ['Web', 'Cloud Infrastructure', 'API Services']                    |
| Budget          | \$190,000                                                          |
| Module Code     | BI_SYSTEM                                                          |
| Parent Project  | NCAA Digital Transformation - Ngorongoro<br>Gateway                |

# 2 Project Overview

### 2.1 What Are We Building

### 2.1.1 System Function

The NCAA Business Intelligence (BI) System serves as the central analytical and decision-support platform for the entire organization. It consolidates operational, administrative, and conservation data across all directorates, sections, and units—transforming dispersed information into actionable insights that enhance efficiency, accountability, and strategic planning.

### 2.1.2 Users

- Board of Directors: Strategic oversight and institutional performance monitoring
- Commissioner & Deputy Commissioners: Executive decision-making and organizational governance
- Departmental Heads: Directorate-level analytics (Conservation & Tourism, Corporate Services, Cross-cutting Units)
- Field Officers & Managers: Operational analytics and real-time performance tracking
- Finance & HR Teams: Budget utilization, staff performance, and resource allocation analytics
- ICT & Data Teams: System administration, data governance, and technical monitoring

### 2.1.3 Problem Solved

Fragmented data across departments leading to delayed reporting, inconsistent decision-making, manual data exchange, time-consuming report generation, and limited inter-departmental visibility. The BI system eliminates data silos, unifies decision-making, and introduces a culture of measurable performance across all NCAA departments.

### 2.1.4 Key Success Metric

100% unified data visibility across all departments, 95% reduction in manual reporting time, automated and standardized reporting processes, instant analytics availability, predictive and AI-driven decision-making capabilities, full accountability through shared dashboards and role-based access.

### 2.2 Scope

### 2.2.1 In Scope

- Enterprise-wide data integration from all NCAA systems (Gateway, Mobile App, Fleet, Surveillance, Finance, HR, Safari Portal)
- ETL (Extract, Transform, Load) pipeline for automated data ingestion and transformation
- Centralized data warehouse (PostgreSQL/Cloud-based) for all institutional data
- Departmental dashboards and performance analytics for all directorates
- Predictive analytics engine powered by Nasera AI
- Automated reporting and compliance module for statutory and management reports
- Data governance and security framework with role-based access control
- API-based integration framework for internal and external systems
- Real-time data synchronization with offline node support
- Cross-departmental reporting connecting Conservation, Tourism, Finance, HR, Procurement, Legal, ICT
- Comprehensive audit trails for transparency and compliance

### 2.2.2 Out Of Scope

- Development of new source systems (focuses on integration of existing systems)
- Direct field data collection (relies on existing systems for data capture)
- Replacement of existing departmental systems (augments and integrates with them)
- Manual data entry interfaces (emphasizes automated data flows)
- Standalone analytics tools outside the unified BI framework

# 3 User Requirements

# 3.1 Enterprise Data Integration

| Feature Code          | I Want To                                                                                                                          | So That I Can                                                                                           | Priority | Notes                                                                                                                                       |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| FT-BI-<br>INTEGRATION | Integrate data from all NCAA systems including Gateway, Mobile App, Surveillance, Fleet Management, Finance, HR, and Safari Portal | Have a single, reliable source of truth for all organizational operations and eliminate data silos      | Must     | API-based bidirectional connectivity with token- based authentication and encryption. Supports both internal and selected external systems. |
| FT-BI-ETL             | Automate data ingestion, cleaning, and transformation through ETL pipelines                                                        | Ensure data quality, standardization, and timely availability for analytics without manual intervention | Must     | Python ETL scripts with Airflow orchestration and RESTful API connectors. Maintains metadata catalogs for governance.                       |

# 3.2 Departmental Analytics

| Feature Code | I Want To        | So That I Can | Priority | Notes          |
|--------------|------------------|---------------|----------|----------------|
| FT-BI-       | Access           | Monitor       | Must     | Covers         |
| DASHBOARDS   | customized       | departmental  |          | Conservation & |
|              | dashboards for   | performance,  |          | Tourism,       |
|              | each directorate | track key     |          | Corporate      |
|              | with relevant    | metrics, and  |          | Services, and  |
|              |                  |               |          | Cross-cutting  |
|              |                  |               |          |                |
|              |                  | Page 10 of 33 |          | www.ncaa.go.tz |

| Feature Code        | I Want To                                                                                    | So That I Can                                                                     | Priority | Notes                                                                   |
|---------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------|
|                     | KPIs and visualizations                                                                      | make data-<br>driven decisions                                                    |          | Units with drill-<br>down<br>capabilities.                              |
| FT-BI-<br>CROSSDEPT | View cross-<br>departmental<br>reports that<br>connect data<br>from multiple<br>directorates | Understand inter- departmental relationships and organizational- wide performance | Should   | Unified reporting framework connecting all NCAA directorates and units. |

# 3.3 Predictive Analytics

| Feature Code           | I Want To                                                                                   | So That I Can                                                                               | Priority | Notes                                                                                                   |
|------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|
| FT-BI-PREDICT          | Access predictive analytics for visitor trends, revenue forecasts, and resource allocation  | Plan proactively<br>and make<br>strategic<br>decisions based<br>on data-driven<br>forecasts | Must     | Powered by Nasera AI's integrated datascience models with seasonal trends and forecasting capabilities. |
| FT-BI-<br>PRESCRIPTIVE | Receive prescriptive recommendations for resource optimization and operational improvements | Take action based<br>on AI-driven<br>insights and best<br>practice<br>recommendations       | Should   | AI-powered recommendations based on historical patterns and organizational goals.                       |

# 3.4 Reporting Compliance

| Feature Code         | I Want To          | So That I Can                | Priority | Notes                           |
|----------------------|--------------------|------------------------------|----------|---------------------------------|
| FT-BI-<br>AUTOREPORT | Generate automated | Ensure timely submission and | Must     | Reduces manual reporting cycles |
|                      |                    | Page 11 of 33                |          | www.ncaa.go.tz                  |

| Feature Code | I Want To                                                                        | So That I Can                                                                                           | Priority | Notes                                                                               |
|--------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------|
|              | statutory and<br>management<br>reports for<br>oversight bodies                   | compliance with internal and national reporting standards                                               |          | by 95% with integrated audit trails for compliance.                                 |
| FT-BI-AUDIT  | Access comprehensive audit trails for all data transactions and system decisions | Maintain<br>transparency,<br>accountability,<br>and compliance<br>with NCAA<br>operational<br>standards | Must     | Every transaction and dataset change is logged with timestamp and user information. |

# 3.5 Data Governance Security

| Feature Code         | I Want To                                                                     | So That I Can                                                                                      | Priority | Notes                                                                                             |
|----------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------|
| FT-BI-RBAC           | Control data<br>access based on<br>user roles and<br>responsibility<br>levels | Ensure data<br>security and that<br>users only access<br>information<br>relevant to their<br>roles | Must     | Role-based access control with encrypted communication and multi-factor authentication.           |
| FT-BI-<br>GOVERNANCE | Manage data validation, versioning, and integrity verification                | Ensure data quality and compliance with NCAA and national data protection standards                | Must     | Built-in data<br>governance tools<br>with validation<br>rules and access<br>control<br>protocols. |

# 3.6 System Accessibility

| Feature Code       | I Want To                           | So That I Can                          | Priority | Notes                               |
|--------------------|-------------------------------------|----------------------------------------|----------|-------------------------------------|
| FT-BI-<br>REALTIME | Access real-time data and analytics | Make timely decisions based on current | Must     | Secure authenticated access via web |
|                    |                                     | Page 12 of 33                          |          | www.ncaa.go.tz                      |

Transformation -Business Intelligence (BI)

| Feature Code  | I Want To                                                                       | So That I Can                                                   | Priority | Notes                                                                                                   |
|---------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------|
|               | through web<br>and mobile<br>interfaces                                         | operational<br>status                                           |          | and mobile-<br>optimized<br>interfaces.                                                                 |
| FT-BI-OFFLINE | Continue data collection and synchronization during network connectivity issues | Maintain continuous operations in low-connectivity environments | Must     | Node-based<br>synchronization<br>ensures<br>continued access<br>and updates<br>even in remote<br>areas. |



# 4 Technical Requirements

### 4.1 Performance

### 4.1.1 Dashboard Load Time

< 3 seconds for standard dashboards

### 4.1.2 Data Refresh Rate

Real-time for critical metrics, 5-minute intervals for standard analytics

### 4.1.3 Query Response Time

< 2 seconds for standard queries, < 10 seconds for complex analytics

### 4.1.4 Etl Processing Time

< 2 minutes for incremental updates, < 30 minutes for full daily processing

### 4.1.5 Concurrent Users

Support for 200+ concurrent users across all departments

### 4.2 Platforms Supported

### 4.2.1 Web Browsers

Chrome 90+, Firefox 88+, Safari 14+, Edge 90+

### 4.2.2 Operating Systems

Windows 10+, macOS 11+, Linux (Ubuntu 20.04+)

### 4.2.3 Mobile Platforms

iOS 12+ and Android 8+ (responsive web interface)

### 4.2.4 Cloud Infrastructure

AWS, Google Cloud, or Azure with scalable architecture

### 4.3 Data Storage

### 4.3.1 Primary Database

PostgreSQL 13+ or cloud-based (AWS Redshift, Google BigQuery)

### 4.3.2 Data Warehouse Capacity

Scalable cloud storage with minimum 5TB initial capacity

### 4.3.3 Backup Frequency

Hourly incremental backups, daily full backups

### 4.3.4 Data Retention

7 years for transaction data, 3 years for operational logs

### 4.3.5 Archival Strategy

Automated data archival to cold storage after 2 years

### 4.4 Security Requirements

### 4.4.1 Encryption At Rest

AES-256 encryption for all stored data

### 4.4.2 Encryption In Transit

TLS 1.3 for all API communications

### 4.4.3 Authentication

OAuth 2.0 with JWT tokens, multi-factor authentication for admin access

### 4.4.4 Authorization

Role-based access control (RBAC) with granular permissions

### 4.4.5 Api Security

Token-based authentication, SSL encryption, API-level rate limiting

### 4.4.6 Compliance

NCAA ICT policies and Tanzania national data governance standards

### 4.5 Integration Requirements

### 4.5.1 Api Architecture

RESTful APIs with JSON data format

# 4.5.2 Api Authentication

Token-based with HTTPS encryption

### 4.5.3 Data Sync Frequency

Real-time for critical systems, 5-minute intervals for others

### 4.5.4 Supported Integrations

- Ngorongoro Gateway
- NCAA Mobile Application
- Fleet Management System
- Surveillance System
- Safari Portal
- Finance Systems
- HR Systems
- Nasera AI

# 5 External Dependencies

# 5.1 Third Party Services

| Service Name                     | Purpose                                      | Criticality | Alternatives                                            |
|----------------------------------|----------------------------------------------|-------------|---------------------------------------------------------|
| Cloud Infrastructure<br>Provider | Hosting data<br>warehouse and BI<br>platform | High        | AWS, Google Cloud,<br>or Azure                          |
| Power BI / Metabase              | Dashboard visualization and analytics        | High        | Tableau, Looker, or<br>custom React-based<br>dashboards |
| Apache Airflow                   | ETL pipeline orchestration                   | Medium      | Apache NiFi, Luigi,<br>or custom Python<br>schedulers   |

# 5.2 Internal Systems

| System Name                | Integration Method                      | Data Frequency     | Criticality |
|----------------------------|-----------------------------------------|--------------------|-------------|
| Ngorongoro Gateway         | RESTful API                             | Real-time          | High        |
| NCAA Mobile<br>Application | RESTful API                             | Real-time          | High        |
| Nasera AI                  | RESTful API + Direct Database<br>Access | Real-time          | High        |
| Fleet Management<br>System | RESTful API                             | 5-minute intervals | Medium      |
| Surveillance System        | RESTful API                             | Real-time          | Medium      |

# 6 Release Planning

### 6.1 Phase 1

### 6.1.1 Name

Discovery & Architecture

### 6.1.2 Duration

4-6 weeks

### 6.1.3 Deliverables

- Data source identification and analysis across all NCAA systems
- Data warehouse design and schema definition
- API integration architecture and security framework
- ETL pipeline design and data flow documentation

### 6.2 Phase 2

### 6.2.1 Name

Core Platform Development

### 6.2.2 Duration

6-12 months

### 6.2.3 Deliverables

- ETL pipeline development and automated data ingestion
- Data cleaning and transformation algorithms
- Dashboard and report development for all directorates
- Advanced analytics modules (predictive and prescriptive)
- User access and security framework implementation

• API development for system integrations

### 6.3 Phase 3

### 6.3.1 Name

Deployment & Training

### 6.3.2 Duration

2-3 months (ongoing)

### 6.3.3 Deliverables

- System deployment on cloud infrastructure
- User training and documentation for all departments
- Post-launch support and optimization
- Continuous monitoring and performance tuning

# 7 Risks Assumptions

### 7.1 Risks

| Risk                                               | Mitigation                                                               | Probability | Impact |
|----------------------------------------------------|--------------------------------------------------------------------------|-------------|--------|
| Data quality issues from legacy systems            | Implement comprehensive data validation and cleaning in ETL pipeline     | Medium      | Medium |
| Resistance to data-<br>driven culture change       | Comprehensive<br>training program and<br>change management<br>support    | Medium      | Low    |
| API integration<br>delays with external<br>systems | Phased integration approach with fallback to manual data imports         | Low         | Medium |
| Cloud infrastructure costs exceeding budget        | Implement cost monitoring and optimization, negotiate reserved instances | Low         | Medium |

# 7.2 Assumptions

- All NCAA source systems will expose or develop APIs for data integration
- Departmental staff will be available for training and knowledge transfer
- Cloud infrastructure provider will maintain 99.9% uptime SLA
- NCAA ICT team will provide ongoing support for system maintenance
- Data governance policies will be established and enforced across all departments

# 8 Market Specific Considerations

### 8.1 Tanzania Context

- Alignment with Tanzania's Digital Economy Strategic Framework
- Support for government digital transformation initiatives in tourism sector
- Compliance with Tanzania Data Protection Act and ICT regulations
- Integration capabilities with national tourism databases and regulatory platforms

### 8.2 Conservation Sector

- Best practices from international conservation organizations (IUCN, WWF)
- Integration with global conservation monitoring systems
- Support for UNESCO World Heritage Site reporting requirements
- Collaboration framework with Tanzania National Parks Authority (TANAPA)

### 8.3 Low Connectivity Adaptation

- Node-based synchronization for distributed gate operations
- Offline data caching with automatic sync on reconnection
- Low-bandwidth optimized API communications
- Local processing capabilities at remote locations

# 9 Sign Off

# 9.1 Prepared By

SkyConnect Development Team

# 9.2 Reviewed By

TBD - NCAA ICT Department

# 9.3 Approved By

TBD - NCAA Management

# 9.4 Date

2025-11-12

# 9.5 Version

1.0

# 10 Detailed Feature Requirements

### 10.1 Ft Bi Integration

### 10.1.1 Feature Name

Enterprise-Wide Data Integration

### 10.1.2 Description

Comprehensive API-based integration framework connecting all NCAA internal and external systems

### 10.1.3 User Stories

- As a data administrator, I want to configure API connections to all source systems so that data flows automatically into the BI platform
- As a department head, I want to see data from my department integrated with other directorates so that I understand cross-functional relationships
- As an executive, I want a unified view of all organizational data so that I can make strategic decisions

### 10.1.4 Acceptance Criteria

- All internal systems (Gateway, Mobile, Fleet, Surveillance) successfully integrated via API
- Finance, HR, and Safari Portal data synchronized at least every 5 minutes
- External systems integration capability with token-based authentication
- Error logging and retry mechanisms for failed API calls
- API monitoring dashboard showing integration health status

### 10.1.5 Test Cases

| Test Id           | Description                    | Preconditions                    | Steps                             | Expected<br>Result                      | Priority |
|-------------------|--------------------------------|----------------------------------|-----------------------------------|-----------------------------------------|----------|
| TC-BI-<br>INT-001 | Verify real-<br>time data sync | Gateway<br>system<br>operational | 1. Create new entry in Gateway 2. | New entry<br>visible in BI<br>dashboard | High     |

| Test Id           | Description                                        | Preconditions                                      | Steps                                                                                       | Expected<br>Result                                                               | System - SRS Priority |
|-------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------|
|                   | from Gateway<br>system                             | with active<br>transactions                        | Wait 30<br>seconds 3.<br>Check BI<br>dashboard                                              | within 30<br>seconds                                                             |                       |
| TC-BI-<br>INT-002 | Verify API<br>authentication<br>and security       | API<br>endpoints<br>configured                     | 1. Attempt API call without token 2. Attempt with invalid token 3. Attempt with valid token | Calls 1 and 2 rejected, call 3 successful                                        | High                  |
| TC-BI-<br>INT-003 | Verify data<br>sync during<br>connectivity<br>loss | Node-based<br>system with<br>offline<br>capability | 1. Disconnect network 2. Create entries 3. Reconnect network 4. Check sync                  | All offline<br>entries<br>synchronized<br>within 2<br>minutes of<br>reconnection | Medium                |

# 10.2 Ft Bi Etl

# 10.2.1 Feature Name

Automated ETL Pipeline

### 10.2.2 Description

Comprehensive data extraction, transformation, and loading pipeline with quality assurance

### 10.2.3 User Stories

- As a data engineer, I want automated ETL pipelines so that data is ingested and transformed without manual intervention
- As a data analyst, I want clean and standardized data so that my analytics are accurate and reliable

• As an administrator, I want to monitor ETL processes so that I can identify and resolve issues quickly

### 10.2.4 Acceptance Criteria

- Automated data ingestion from all configured sources
- Data validation and cleaning rules applied to all incoming data
- Data transformation to standard formats and schemas
- Metadata catalog maintenance for all datasets
- ETL monitoring dashboard with error alerts
- Incremental processing < 2 minutes, full daily processing < 30 minutes

### 10.2.5 Test Cases

|                   | Description                                       | Preconditions                                 | Steps                                                                                       | Expected<br>Result                                                                             | Priority |
|-------------------|---------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------|
| TC-BI-<br>ETL-001 | Verify data<br>validation<br>rules<br>enforcement | ETL pipeline configured with validation rules | 1. Submit data with invalid formats 2. Submit data with missing fields 3. Submit valid data | Invalid data<br>rejected with<br>error<br>messages,<br>valid data<br>processed<br>successfully | High     |
| TC-BI-<br>ETL-002 | Verify incremental data processing performance    | ETL pipeline operational                      | 1. Submit 1000 new records 2. Measure processing time 3. Verify data in warehouse           | Processing completes in < 2 minutes, all records in warehouse                                  | High     |
| TC-BI-<br>ETL-003 | Verify<br>metadata<br>catalog<br>updates          | Metadata<br>catalog<br>system active          | <ol> <li>Add new data source</li> <li>Run ETL pipeline 3.</li> <li>Check</li> </ol>         | New data<br>source<br>documented<br>in catalog<br>with schema                                  | Medium   |

| Test Id | Description | Preconditions | Steps               | Expected<br>Result      | Priority |
|---------|-------------|---------------|---------------------|-------------------------|----------|
|         |             |               | metadata<br>catalog | and lineage information |          |

### 10.3 Ft Bi Dashboards

### 10.3.1 Feature Name

Departmental Dashboards and Analytics

### 10.3.2 Description

Customized interactive dashboards for each NCAA directorate with drill-down capabilities

### 10.3.3 User Stories

- As a Conservation Director, I want to see visitor flow, revenue, and ecological indicators in one dashboard
- As a Corporate Services Director, I want to track budget utilization, staff performance, and procurement cycles
- As a department manager, I want to drill down into specific metrics to understand underlying trends

### 10.3.4 Acceptance Criteria

- Separate dashboards for Conservation & Tourism, Corporate Services, and Cross-cutting Units
- Customizable KPI widgets for each directorate
- Drill-down capability from summary to detailed views
- Interactive visualizations (charts, graphs, maps)
- Export functionality for reports and presentations
- Dashboard load time < 3 seconds

# 10.3.5 Test Cases

| Test Id            | Description                                               | Preconditions                                  | Steps                                                                                                           | Expected<br>Result                                                                      | Priority |
|--------------------|-----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|
| TC-BI-<br>DASH-001 | Verify Conservation & Tourism dashboard displays all KPIs | User logged<br>in with<br>Conservation<br>role | 1. Navigate to dashboard 2. Verify visitor flow widget 3. Verify revenue widget 4. Verify ecological indicators | All widgets display current data with accurate values                                   | High     |
| TC-BI-<br>DASH-002 | Verify drill-<br>down<br>functionality                    | Dashboard<br>displaying<br>summary<br>data     | 1. Click on revenue summary 2. Select specific gate 3. Select date range                                        | Detailed<br>revenue<br>breakdown<br>displayed for<br>selected gate<br>and date<br>range | High     |
| TC-BI-<br>DASH-003 | Verify dashboard performance with 50 concurrent users     | Load testing environment configured            | 1. Simulate 50 users accessing dashboards 2. Measure load time 3. Check system resources                        | All dashboards load in < 3 seconds, system remains stable                               | Medium   |

# 10.4 Ft Bi Predict

10.4.1 Feature Name

Predictive Analytics Engine

### 10.4.2 Description

AI-powered forecasting for visitor trends, revenue, and resource allocation

### 10.4.3 User Stories

- As an operations manager, I want to see predicted visitor numbers for next month so that I can plan staffing accordingly
- As a finance director, I want revenue forecasts so that I can prepare budget projections
- As a resource planner, I want to know optimal resource allocation based on historical patterns

### 10.4.4 Acceptance Criteria

- Seasonal visitor trend predictions with 80%+ accuracy
- Revenue forecasting for 1, 3, and 6 month horizons
- Resource allocation recommendations based on predictive models
- Integration with Nasera AI for model training and inference
- Confidence intervals displayed for all predictions
- Model retraining on monthly basis with new data

### 10.4.5 Test Cases

| Test Id            | Description                                       | Preconditions                                           | Steps                                                                                   | Expected<br>Result                                                          | Priority |
|--------------------|---------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------|
| TC-BI-<br>PRED-001 | Verify visitor<br>trend<br>prediction<br>accuracy | Historical<br>data for at<br>least 2 years<br>available | 1. Generate prediction for last month 2. Compare with actual data 3. Calculate accuracy | Prediction accuracy > 80% for monthly visitor numbers                       | High     |
| TC-BI-<br>PRED-002 | Verify<br>revenue<br>forecast<br>generation       | Predictive<br>model trained<br>and deployed             | 1. Request 3-month revenue forecast 2. Review forecast details 3.                       | Forecast<br>generated<br>with values<br>for each<br>month and<br>confidence | High     |

| Test Id            | Description                     | Preconditions                     | Steps                                                                          | Expected<br>Result                                            | Priority Priority |
|--------------------|---------------------------------|-----------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------|
|                    |                                 |                                   | Check<br>confidence<br>intervals                                               | intervals<br>displayed                                        |                   |
| TC-BI-<br>PRED-003 | Verify model retraining process | New month<br>of data<br>available | 1. Trigger model retraining 2. Monitor training progress 3. Validate new model | Model retrained successfully, accuracy maintained or improved | Medium            |

### 10.5 Ft Bi Autoreport

### 10.5.1 Feature Name

Automated Reporting and Compliance

### 10.5.2 Description

Automated generation of statutory and management reports with audit trails

### 10.5.3 User Stories

- As a compliance officer, I want automated report generation so that I meet all regulatory deadlines
- As a board secretary, I want management reports ready before meetings without manual compilation
- As an auditor, I want complete audit trails so that I can verify all reported data

### 10.5.4 Acceptance Criteria

- · Automated generation of monthly, quarterly, and annual reports
- Customizable report templates for different stakeholders
- Scheduled report delivery via email or dashboard
- Complete audit trails with timestamp and user information
- 95% reduction in manual reporting time
- Reports comply with NCAA and national reporting standards

# 10.5.5 Test Cases

| Test Id           | Description                                | Preconditions                                             | Steps                                                                                           | Expected<br>Result                                                               | Priority |
|-------------------|--------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------|
| TC-BI-<br>REP-001 | Verify automated monthly report generation | End of month<br>data available                            | 1. Trigger monthly report 2. Review report content 3. Verify data accuracy 4. Check audit trail | Report generated with all required sections, data accurate, audit trail complete | High     |
| TC-BI-<br>REP-002 | Verify<br>scheduled<br>report<br>delivery  | Report<br>schedule<br>configured<br>for Board<br>meetings | 1. Configure weekly report 2. Wait for scheduled time 3. Check email delivery                   | Report delivered automatically at scheduled time to configured recipients        | High     |
| TC-BI-<br>REP-003 | Verify audit<br>trail<br>completeness      | Multiple data<br>transactions<br>completed                | 1. Access audit trail interface 2. Filter by date range 3. Review transaction logs              | All transactions logged with timestamp, user, and change details                 | Medium   |

### 11 Additional Context

### 11.1 System Architecture

### 11.1.1 Data Source Layer

Collects data from all digital platforms and legacy systems via secured endpoint APIs with token-based authentication, SSL encryption, and data validation

### 11.1.2 Etl Pipeline

Automated data ingestion and transformation powered by Python ETL scripts, Airflow orchestration, and RESTful API connectors

### 11.1.3 Data Warehouse

Centralized repository on PostgreSQL or cloud-based (AWS Redshift/Google BigQuery) optimized for high-speed analytics

### 11.1.4 Analytics Visualization

Power BI and Metabase dashboards integrated with Nasera AI for natural language queries

### 11.1.5 Security Access

Role-based access control (RBAC), encrypted communication, API rate limiting, multi-factor authentication

### 11.1.6 Node Synchronization

Distributed Gate Nodes sync with BI system through secure APIs for real-time updates in low-connectivity environments

### 11.2 Integration Approach

### 11.2.1 Data Ingestion

All internal and external systems expose secured endpoint APIs transmitting encrypted data to BI server

### 11.2.2 Transformation Storage

Data cleaned, aggregated, and stored in BI warehouse for real-time and historical analysis

### 11.2.3 Processing Analytics

BI engine processes datasets and feeds dashboards and predictive models

### 11.2.4 Ai Enhancement

Nasera AI interprets trends, detects anomalies, enables natural language queries

### 11.2.5 Distribution

Dashboards and reports delivered securely via authenticated web and mobile interfaces

### 11.3 Key Benefits

### 11.3.1 Data Accessibility

From fragmented and delayed to centralized, real-time access via APIs - achieving unified visibility

### 11.3.2 Decision Making

From periodic reports to predictive and AI-driven insights - enabling data-informed decisions

### 11.3.3 Data Exchange

From manual uploads to automated API-based synchronization - achieving 100% automation

### 11.3.4 Reporting

From time-consuming and inconsistent to automated and standardized - achieving 95% time reduction

### 11.3.5 Transparency

From limited inter-departmental view to shared dashboards with role-based access - achieving full accountability

# 11.4 Total Budget Breakdown

### 11.4.1 Discovery Architecture

\$40,000 (Data source analysis and warehouse design)

### 11.4.2 Data Engineering Etl

\$30,000 (ETL development and data transformation)

### 11.4.3 Bi Analytics Platform

\$90,000 (Dashboards, advanced analytics, user access)

### 11.4.4 Deployment Training Support

\$30,000 (System deployment, training, post-launch support)

### 11.4.5 Total

\$190,000